Titre : |
A Student's Guide to General Relativity |
Type de document : |
texte imprimé |
Auteurs : |
Norman Gray, Auteur |
Editeur : |
Cambridge ; New York ; Melbourne [UK ; USA] : Cambridge University Press (CUP) |
Année de publication : |
cop. 2019 |
Collection : |
Student's Guides |
Importance : |
1 vol. (151 p.) |
Présentation : |
couv. ill. en coul. |
Format : |
23 cm |
ISBN/ISSN/EAN : |
978-1-316-63479-0 |
Note générale : |
Contient : 1. Introduction . - 2. Vectors, tensors and functions. - 3. Manifolds, vectors and differentiation - 4. Energy, momentum and Einstein's equations .- Appendix A. Special relativity : a brief introduction. - Appendix B. Solutions to Einstein's equations. - Appendix C. Notation. -- PPN 236202707. - ISBN 978-1-316-63479-0 (paperback) . - 978-1-107-18346-9(hardback) . |
Langues : |
Anglais (eng) |
Tags : |
Relativité générale (physique) -- Manuels d'enseignement supérieur Relativité générale (physique) -- Problèmes et exercices Calcul tensoriel Algèbre tensorielle Variétés (mathématiques) Einstein, Équations du champ d' Analyse vectorielle Lorentz, Transformations de Relativité restreinte (physique) Rayonnement gravitationnel General relativity -- Textbooks Calculus of tensors Algebra Manifolds (mathematics) Einstein field equations Vector analysis Special relativity (physics) Gravity waves Lorentz transformations |
Index. décimale : |
530.11 Théorie de la relativité |
Résumé : |
This compact guide presents the key features of general relativity, to support and supplement the presentation in mainstream, more comprehensive undergraduate textbooks, or as a re-cap of essentials for graduate students pursuing more advanced studies. It helps students plot a careful path to understanding the core ideas and basics of differential geometry, as applied to general relativity, without overwhelming them. While the guide doesn't shy away from necessary technicalities, it emphasises the essential simplicity of the main physical arguments. Presuming a familiarity with special relativity (with a brief account in an appendix), it describes how general covariance and the equivalence principle motivate Einstein's theory of gravitation. It then introduces differential geometry and the covariant derivative as the mathematical technology which allows us to understand Einstein's equations of general relativity. The book is supported by numerous worked exampled and problems, and important applications of general relativity are described in an appendix. (source : site de l'éditeur) |
Note de contenu : |
Bibliogr. p. 148-149. Index p.150 |
A Student's Guide to General Relativity [texte imprimé] / Norman Gray, Auteur . - Cambridge ; New York ; Melbourne (UK ; USA) : Cambridge University Press (CUP), cop. 2019 . - 1 vol. (151 p.) : couv. ill. en coul. ; 23 cm. - ( Student's Guides) . ISBN : 978-1-316-63479-0 Contient : 1. Introduction . - 2. Vectors, tensors and functions. - 3. Manifolds, vectors and differentiation - 4. Energy, momentum and Einstein's equations .- Appendix A. Special relativity : a brief introduction. - Appendix B. Solutions to Einstein's equations. - Appendix C. Notation. -- PPN 236202707. - ISBN 978-1-316-63479-0 (paperback) . - 978-1-107-18346-9(hardback) . Langues : Anglais ( eng)
Tags : |
Relativité générale (physique) -- Manuels d'enseignement supérieur Relativité générale (physique) -- Problèmes et exercices Calcul tensoriel Algèbre tensorielle Variétés (mathématiques) Einstein, Équations du champ d' Analyse vectorielle Lorentz, Transformations de Relativité restreinte (physique) Rayonnement gravitationnel General relativity -- Textbooks Calculus of tensors Algebra Manifolds (mathematics) Einstein field equations Vector analysis Special relativity (physics) Gravity waves Lorentz transformations |
Index. décimale : |
530.11 Théorie de la relativité |
Résumé : |
This compact guide presents the key features of general relativity, to support and supplement the presentation in mainstream, more comprehensive undergraduate textbooks, or as a re-cap of essentials for graduate students pursuing more advanced studies. It helps students plot a careful path to understanding the core ideas and basics of differential geometry, as applied to general relativity, without overwhelming them. While the guide doesn't shy away from necessary technicalities, it emphasises the essential simplicity of the main physical arguments. Presuming a familiarity with special relativity (with a brief account in an appendix), it describes how general covariance and the equivalence principle motivate Einstein's theory of gravitation. It then introduces differential geometry and the covariant derivative as the mathematical technology which allows us to understand Einstein's equations of general relativity. The book is supported by numerous worked exampled and problems, and important applications of general relativity are described in an appendix. (source : site de l'éditeur) |
Note de contenu : |
Bibliogr. p. 148-149. Index p.150 |
|