| Titre : | 
					Python Recipes for Earth Sciences | 
				 
					| Type de document :  | 
					texte imprimé | 
				 
					| Auteurs :  | 
					Martin H. Trauth (1963-....), Auteur | 
				 
					| Editeur : | 
					Cham : Springer Nature Switzerland | 
				 
					| Année de publication :  | 
					2022 | 
				 
					| Collection :  | 
					Springer Textbooks in Earth Sciences, Geography and Environment, ISSN 2510-1307  | 
				 
					| Importance :  | 
					1 vol. (XII-453 p.) | 
				 
					| Présentation :  | 
					ill. en coul., couv ill. en coul. | 
				 
					| Format :  | 
					24 cm | 
				 
					| ISBN/ISSN/EAN :  | 
					978-3-031-07718-0 | 
				 
					| Note générale :  | 
					PPN 265100615 | 
				 
					| Langues : | 
					Anglais (eng) | 
				 
					| Tags : | 
					Géologie -- Informatique  Python (langage de programmation)  Traitement d'images  Analyse temps-fréquence  Traitement du signal  Séries chronologiques  Geology -- Data processing  Python (Computer program language)  Image processing  Time-series analysis  Signal processing | 
				 
					| Index. décimale :  | 
					550.285 Sciences de la terre - Informatique appliquée  | 
				 
					| Résumé :  | 
					Python is used in a wide range of geoscientific applications, such as in processing images for remote sensing, in generating and processing digital elevation models, and in analyzing time series. This book introduces methods of data analysis in the geosciences using Python that include basic statistics for univariate, bivariate, and multivariate data sets, time series analysis, and signal processing; the analysis of spatial and directional data; and image analysis. The text includes numerous examples that demonstrate how Python can be used on data sets from the earth sciences. The supplementary electronic material (available online through Springer Link) contains the example data as well as recipes that include all the Python commands featured in the book. (4ème de couverture) | 
				 
					| Note de contenu :  | 
					1. Data analysis in the Earth science - 2. Introduction to Python - 3. Univariate statistics - 4. Bivariate statistics - 5. Time serie analysis - 6. Signal processing - 7. Spatial data - 8. Image processing - 9. Multivariate statistics - 10. Directional data  - Références bibliographiques en fin de chapitre. | 
				  
 
					Python Recipes for Earth Sciences [texte imprimé] /  Martin H. Trauth (1963-....), Auteur . -  Cham : Springer Nature Switzerland, 2022 . - 1 vol. (XII-453 p.) : ill. en coul., couv ill. en coul. ; 24 cm. - ( Springer Textbooks in Earth Sciences, Geography and Environment, ISSN 2510-1307) . ISBN : 978-3-031-07718-0 PPN 265100615 Langues : Anglais ( eng) 
					| Tags : | 
					Géologie -- Informatique  Python (langage de programmation)  Traitement d'images  Analyse temps-fréquence  Traitement du signal  Séries chronologiques  Geology -- Data processing  Python (Computer program language)  Image processing  Time-series analysis  Signal processing | 
				 
					| Index. décimale :  | 
					550.285 Sciences de la terre - Informatique appliquée  | 
				 
					| Résumé :  | 
					Python is used in a wide range of geoscientific applications, such as in processing images for remote sensing, in generating and processing digital elevation models, and in analyzing time series. This book introduces methods of data analysis in the geosciences using Python that include basic statistics for univariate, bivariate, and multivariate data sets, time series analysis, and signal processing; the analysis of spatial and directional data; and image analysis. The text includes numerous examples that demonstrate how Python can be used on data sets from the earth sciences. The supplementary electronic material (available online through Springer Link) contains the example data as well as recipes that include all the Python commands featured in the book. (4ème de couverture) | 
				 
					| Note de contenu :  | 
					1. Data analysis in the Earth science - 2. Introduction to Python - 3. Univariate statistics - 4. Bivariate statistics - 5. Time serie analysis - 6. Signal processing - 7. Spatial data - 8. Image processing - 9. Multivariate statistics - 10. Directional data  - Références bibliographiques en fin de chapitre. | 
				 
  |