Titre : |
Einstein's General Theory of Relativity : A Concise Introduction |
Type de document : |
texte imprimé |
Auteurs : |
Brian P. Dolan, Auteur |
Editeur : |
Cambridge ; New York ; Melbourne [UK ; USA] : Cambridge University Press (CUP) |
Année de publication : |
2023, cop. 2023 |
Importance : |
1 vol. (x-203 p.) |
Présentation : |
ill., fig. |
Format : |
23 cm |
ISBN/ISSN/EAN : |
978-1-00-926373-3 |
Note générale : |
. -- PPN 27098559X |
Langues : |
Anglais (eng) |
Tags : |
Relativité générale (physique) General relativity (Physics) |
Index. décimale : |
530.11 Théorie de la relativité |
Résumé : |
Einstein's general theory of relativity can be a notoriously difficult subject for students approaching it for the first time, with arcane mathematical concepts such as connection coefficients and tensors adorned with a forest of indices. This book is an elementary introduction to Einstein's theory and the physics of curved space-times that avoids these complications as much as possible. Its first half describes the physics of black holes, gravitational waves and the expanding Universe, without using tensors. Only in the second half are Einstein's field equations derived and used to explain the dynamical evolution of the early Universe and the creation of the first elements. Each chapter concludes with problem sets and technical mathematical details are given in the appendices. This short text is intended for undergraduate physics students who have taken courses in special relativity and advanced mechanics. (4ème de couverture) |
Note de contenu : |
Bibliogr. p. 198. Index p. 199-203. - Sommaire : Frontmatter (pp i-iv) - Dedication (pp v-vi) - Contents (pp vii-viii) - Preface (pp ix-x) - 1 - Introduction (pp 1-13) - 2. Metrics (pp 14-43) - 3 - Geodesics (pp 44-84) - 4 - The Geometry of Curved Spaces (pp 85-118) - 5 - Einstein’s Field Equations (pp 119-125) - 6 - Solutions of Einstein’s Equations in Empty Space (pp 126-138) - 7 - Cosmology and the Big Bang (pp 139-176) - Appendix A - Tensors of Type (p, q) (pp 177-177) - Appendix B - The Riemann Tensor (pp 178-186) - Appendix C - The Energy-Momentum Tensor (pp 187-191) - Appendix D - The Schwarzschild Metric (pp 192-194) - Appendix E - Robertson-Walker Space-Time (pp 195-197) - References (pp 198-198). |
Einstein's General Theory of Relativity : A Concise Introduction [texte imprimé] / Brian P. Dolan, Auteur . - Cambridge ; New York ; Melbourne (UK ; USA) : Cambridge University Press (CUP), 2023, cop. 2023 . - 1 vol. (x-203 p.) : ill., fig. ; 23 cm. ISBN : 978-1-00-926373-3 . -- PPN 27098559X Langues : Anglais ( eng)
Tags : |
Relativité générale (physique) General relativity (Physics) |
Index. décimale : |
530.11 Théorie de la relativité |
Résumé : |
Einstein's general theory of relativity can be a notoriously difficult subject for students approaching it for the first time, with arcane mathematical concepts such as connection coefficients and tensors adorned with a forest of indices. This book is an elementary introduction to Einstein's theory and the physics of curved space-times that avoids these complications as much as possible. Its first half describes the physics of black holes, gravitational waves and the expanding Universe, without using tensors. Only in the second half are Einstein's field equations derived and used to explain the dynamical evolution of the early Universe and the creation of the first elements. Each chapter concludes with problem sets and technical mathematical details are given in the appendices. This short text is intended for undergraduate physics students who have taken courses in special relativity and advanced mechanics. (4ème de couverture) |
Note de contenu : |
Bibliogr. p. 198. Index p. 199-203. - Sommaire : Frontmatter (pp i-iv) - Dedication (pp v-vi) - Contents (pp vii-viii) - Preface (pp ix-x) - 1 - Introduction (pp 1-13) - 2. Metrics (pp 14-43) - 3 - Geodesics (pp 44-84) - 4 - The Geometry of Curved Spaces (pp 85-118) - 5 - Einstein’s Field Equations (pp 119-125) - 6 - Solutions of Einstein’s Equations in Empty Space (pp 126-138) - 7 - Cosmology and the Big Bang (pp 139-176) - Appendix A - Tensors of Type (p, q) (pp 177-177) - Appendix B - The Riemann Tensor (pp 178-186) - Appendix C - The Energy-Momentum Tensor (pp 187-191) - Appendix D - The Schwarzschild Metric (pp 192-194) - Appendix E - Robertson-Walker Space-Time (pp 195-197) - References (pp 198-198). |
|