Détail de l'auteur
Auteur Denis Serre (1954-...) |
Documents disponibles écrits par cet auteur
trié(s) par (Pertinence décroissant(e), Titre croissant(e)) Affiner la recherche
Systems of conservation laws, 1. Hyperbolicity, entropies, shock waves / Denis Serre (1999, cop. 1999)
Titre de série : Systems of conservation laws, 1 Titre : Hyperbolicity, entropies, shock waves Type de document : texte imprimé Auteurs : Denis Serre (1954-...), Auteur ; Ian Naismith Sneddon (1919-2000), Traducteur Editeur : Cambridge ; New York ; Melbourne [UK ; USA] : Cambridge University Press (CUP) Année de publication : 1999, cop. 1999 Importance : 1 vol. (xxii-263 p.) Présentation : fig. Format : 25 cm ISBN/ISSN/EAN : 978-0-521-58233-9 Note générale : Titre original : Systèmes de lois de conservation. I, hyperbolicité, entropies, ondes de choc -- PPN 070830681 -- ISBN : 0-521-58233-4 (rel.) . Langues : Anglais (eng) Tags : Lois de conservation (physique) -- Mathématiques Entropie Ondes de choc Physique mathématique Conservation laws (Physics) -- Mathematics Entropy Shock waves Mathematical physics Real and Complex Analysis Index. décimale : 515.35 Équations différentielles. Problème de Cauchy. Ordres et degrés. Problèmes aux limites (généralités). Théories de la bifurcation, de la perturbation, de la stabilité Résumé : Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations. [source : 4ème de couv.] Note de contenu : 1 - Some models (pp 1-24) -- 2 - Scalar equations in dimension d = 1 (pp 25-67) - 3 - Linear and quasi-linear systems (pp 68-105) - 4 - Dimension d = 1, the Riemann problem (pp 106-145) - 5 - The Glimm scheme (pp 146-185) - 6 - Second order perturbations (pp 186-219) - 7 - Viscosity profiles for shock waves (pp 220-254) - Bibliogr. p. 255-260. Index p.261-263 Systems of conservation laws, 1. Hyperbolicity, entropies, shock waves [texte imprimé] / Denis Serre (1954-...), Auteur ; Ian Naismith Sneddon (1919-2000), Traducteur . - Cambridge ; New York ; Melbourne (UK ; USA) : Cambridge University Press (CUP), 1999, cop. 1999 . - 1 vol. (xxii-263 p.) : fig. ; 25 cm.
ISBN : 978-0-521-58233-9
Titre original : Systèmes de lois de conservation. I, hyperbolicité, entropies, ondes de choc -- PPN 070830681 -- ISBN : 0-521-58233-4 (rel.) .
Langues : Anglais (eng)
Tags : Lois de conservation (physique) -- Mathématiques Entropie Ondes de choc Physique mathématique Conservation laws (Physics) -- Mathematics Entropy Shock waves Mathematical physics Real and Complex Analysis Index. décimale : 515.35 Équations différentielles. Problème de Cauchy. Ordres et degrés. Problèmes aux limites (généralités). Théories de la bifurcation, de la perturbation, de la stabilité Résumé : Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations. [source : 4ème de couv.] Note de contenu : 1 - Some models (pp 1-24) -- 2 - Scalar equations in dimension d = 1 (pp 25-67) - 3 - Linear and quasi-linear systems (pp 68-105) - 4 - Dimension d = 1, the Riemann problem (pp 106-145) - 5 - The Glimm scheme (pp 146-185) - 6 - Second order perturbations (pp 186-219) - 7 - Viscosity profiles for shock waves (pp 220-254) - Bibliogr. p. 255-260. Index p.261-263 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-010451 010451 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Sous sol-1-Ouvrages Sorti jusqu'au 13/11/2025 Systems of conservation laws, 2. Geometric structures, oscillations, and initial-boundary value problems / Denis Serre (2000, cop. 2000)
Titre de série : Systems of conservation laws, 2 Titre : Geometric structures, oscillations, and initial-boundary value problems Type de document : texte imprimé Auteurs : Denis Serre (1954-...), Auteur ; Ian Naismith Sneddon (1919-2000), Traducteur Editeur : Cambridge ; New York ; Melbourne [UK ; USA] : Cambridge University Press (CUP) Année de publication : 2000, cop. 2000 Importance : 1 vol. (xii-269 p.) Présentation : fig. Format : 25 cm ISBN/ISSN/EAN : 978-0-521-63330-7 Note générale : Titre original : Systèmes de lois de conservation. II, structures géométriques, oscillations et problèmes mixtes. -- PPN 070830673 -- ISBN : 0-521-63330-3 (rel.).
Langues : Anglais (eng) Tags : Lois de conservation (physique) -- Mathématiques Physique mathématique Équations aux dérivées partielles Cauchy, Problème de Milieux continus, Mécanique des Conservation laws (Physics) -- Mathematics Mathematical physics Differential equations, Partial Cauchy problem Continuum mechanics Index. décimale : 515.35 Équations différentielles. Problème de Cauchy. Ordres et degrés. Problèmes aux limites (généralités). Théories de la bifurcation, de la perturbation, de la stabilité Résumé : Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations. [source : 4ème de couv.] Note de contenu : Bibliogr. p. 261-265. Index p. 267-269 Systems of conservation laws, 2. Geometric structures, oscillations, and initial-boundary value problems [texte imprimé] / Denis Serre (1954-...), Auteur ; Ian Naismith Sneddon (1919-2000), Traducteur . - Cambridge ; New York ; Melbourne (UK ; USA) : Cambridge University Press (CUP), 2000, cop. 2000 . - 1 vol. (xii-269 p.) : fig. ; 25 cm.
ISBN : 978-0-521-63330-7
Titre original : Systèmes de lois de conservation. II, structures géométriques, oscillations et problèmes mixtes. -- PPN 070830673 -- ISBN : 0-521-63330-3 (rel.).
Langues : Anglais (eng)
Tags : Lois de conservation (physique) -- Mathématiques Physique mathématique Équations aux dérivées partielles Cauchy, Problème de Milieux continus, Mécanique des Conservation laws (Physics) -- Mathematics Mathematical physics Differential equations, Partial Cauchy problem Continuum mechanics Index. décimale : 515.35 Équations différentielles. Problème de Cauchy. Ordres et degrés. Problèmes aux limites (généralités). Théories de la bifurcation, de la perturbation, de la stabilité Résumé : Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations. [source : 4ème de couv.] Note de contenu : Bibliogr. p. 261-265. Index p. 267-269 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-010452 010452 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Sous sol-1-Ouvrages Sorti jusqu'au 13/11/2025