Détail de l'indexation
Ouvrages de la bibliothèque en indexation 519.53
trié(s) par (Pertinence décroissant(e), Titre croissant(e)) Affiner la recherche
Linear Probability, Logit and Probit Models / John Herbert Aldrich (cop. 1984)
Titre : Linear Probability, Logit and Probit Models Type de document : texte imprimé Auteurs : John Herbert Aldrich (1947-....), Auteur ; Forrest D. Nelson, Auteur Editeur : Beverly Hills ; London ; New Delhi : Sage Publications Année de publication : cop. 1984 Collection : Sage University papers. Series Quantitative applications in the social sciences, ISSN 0149-192X num. 45 Importance : 1 vol. (95 p.) Présentation : ill., diagr., tab. Format : 22 cm ISBN/ISSN/EAN : 978-0-8039-2133-7 Prix : 14,99 USD Note générale : Autre[s] tirage[s] : 1989. - ISBN : 0-8039-2133-0 (br.)
PPN 005062802Langues : Anglais (eng) Tags : Probabilités Probits Logits Modèles linéaires (statistique ) Sciences sociales -- Modèles mathématiques Sciences sociales -- Méthodes statistiques Probabilities Social sciences -- Mathematical models Social sciences -- Statistical models Index. décimale : 519.53 Statistiques descriptives, analyse multivariée, analyse de la variance et de la covariance Note de contenu : Bibliogr. p. 93-94. Notes bibliogr. p. 85-91 Linear Probability, Logit and Probit Models [texte imprimé] / John Herbert Aldrich (1947-....), Auteur ; Forrest D. Nelson, Auteur . - Beverly Hills ; London ; New Delhi : Sage Publications, cop. 1984 . - 1 vol. (95 p.) : ill., diagr., tab. ; 22 cm. - (Sage University papers. Series Quantitative applications in the social sciences, ISSN 0149-192X; 45) .
ISBN : 978-0-8039-2133-7 : 14,99 USD
Autre[s] tirage[s] : 1989. - ISBN : 0-8039-2133-0 (br.)
PPN 005062802
Langues : Anglais (eng)
Tags : Probabilités Probits Logits Modèles linéaires (statistique ) Sciences sociales -- Modèles mathématiques Sciences sociales -- Méthodes statistiques Probabilities Social sciences -- Mathematical models Social sciences -- Statistical models Index. décimale : 519.53 Statistiques descriptives, analyse multivariée, analyse de la variance et de la covariance Note de contenu : Bibliogr. p. 93-94. Notes bibliogr. p. 85-91 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-007634 007634 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Salle de lecture-Ouvrages Disponible Model-based clustering and classification for data science / Charles Bouveyron (2019)
Titre : Model-based clustering and classification for data science : with applications in R Type de document : texte imprimé Auteurs : Charles Bouveyron (1979-....), Auteur ; Gilles Celeux, Auteur ; Thomas Brendan Murphy, Auteur ; Adrian E. Raftery Editeur : Cambridge : Cambridge University Press Année de publication : 2019 Collection : Cambridge series in statistical and probabilistic mathematics, ISSN 2633-0199 Importance : 1 vol. (xvii-427 p.) Présentation : ill., couv. ill. en coul. ; 26 cm Format : 26 cm ISBN/ISSN/EAN : 978-1-108-49420-5 Note générale : PPN 240418786 Langues : Anglais (eng) Tags : R (logiciel) Classification automatique (statistique) Analyse des données Modèles mathématiques R (Computer program language) Cluster analysis Mathematical statistics Statistics -- Classification Index. décimale : 519.53 Statistiques descriptives, analyse multivariée, analyse de la variance et de la covariance Résumé : Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as : how many clusters are there ? Which method should I use ? How should I handle outliers ? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code ; describes modern approaches to high-dimensional data and networks ; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics. Note de contenu : Bibliogr. p. [386]-414. Index Model-based clustering and classification for data science : with applications in R [texte imprimé] / Charles Bouveyron (1979-....), Auteur ; Gilles Celeux, Auteur ; Thomas Brendan Murphy, Auteur ; Adrian E. Raftery . - Cambridge : Cambridge University Press, 2019 . - 1 vol. (xvii-427 p.) : ill., couv. ill. en coul. ; 26 cm ; 26 cm. - (Cambridge series in statistical and probabilistic mathematics, ISSN 2633-0199) .
ISBN : 978-1-108-49420-5
PPN 240418786
Langues : Anglais (eng)
Tags : R (logiciel) Classification automatique (statistique) Analyse des données Modèles mathématiques R (Computer program language) Cluster analysis Mathematical statistics Statistics -- Classification Index. décimale : 519.53 Statistiques descriptives, analyse multivariée, analyse de la variance et de la covariance Résumé : Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as : how many clusters are there ? Which method should I use ? How should I handle outliers ? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code ; describes modern approaches to high-dimensional data and networks ; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics. Note de contenu : Bibliogr. p. [386]-414. Index Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-010161 010161 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Salle de lecture-Ouvrages Disponible Statistical analysis of spatial and spatio-temporal point patterns [3rd ed.] / Peter J. Diggle (2014, cop. 2014)
Titre : Statistical analysis of spatial and spatio-temporal point patterns [3rd ed.] Type de document : texte imprimé Auteurs : Peter J. Diggle, Auteur Mention d'édition : Third Edition Editeur : Boca Raton ; London ; New York : CRC Press Année de publication : 2014, cop. 2014 Collection : Monographs on statistics and applied probability num. 128 Importance : 1 vol. (XXXI-267 p.) Présentation : ill., couv. ill. en coul. Format : 24 cm ISBN/ISSN/EAN : 978-1-4665-6023-9 Note générale : To the memory of Julian Besag FRS, 1945-2010. -- PPN 19546768X Langues : Anglais (eng) Tags : Analyse spatiale (Statistique) R (logiciel) Processus stochastiques Markov, Processus de Poisson, Processus de Epidémiologie Évaluation du risque -- Méthodes statistiques Spatial analysis (Statistics) Stochastic processes Markov processes Poisson processes Epidemiology Risk assessment Index. décimale : 519.53 Statistiques descriptives, analyse multivariée, analyse de la variance et de la covariance Résumé : Written by a prominent statistician and author, the first edition of this bestseller broke new ground in the then emerging subject of spatial statistics with its coverage of spatial point patterns. Retaining all the material from the second edition and adding substantial new material, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition presents models and statistical methods for analyzing spatially referenced point process data. Reflected in the title, this third edition now covers spatio-temporal point patterns. It explores the methodological developments from the last decade along with diverse applications that use spatio-temporally indexed data. Practical examples illustrate how the methods are applied to analyze spatial data in the life sciences. This edition also incorporates the use of R through several packages dedicated to the analysis of spatial point process data. Sample R code and data sets are available on the author's website -- Source other than Library of Congress Note de contenu : Sommaire (abrégé) : List of figures (p.xv). - List of tables (p.xxvii). - Preface (p.xxix). - 1. Introduction (p.1). - 2. Preliminary testing (p.17). - 3. Methods for sparsely sampled patterns (p.39). - 4. Spatial point processes (p.55). - 5. Nonparametric methods (p.83) - 6. Models (p.99) - 7. Model-fitting using summary descriptions (p.131). - 8. Model-fitting using likelihood-based methods (p.151) - 9. Point process methods in spatial epidemiology (p.173). - 10. Spatio-temporal point processes (p.195). - 11. Exploratory analysis (p.209). - 12. Empirical models and methods (p.223). - 13. Mechanistic models and methods (p.235). - References (p.245) - Index (p.263)
Statistical analysis of spatial and spatio-temporal point patterns [3rd ed.] [texte imprimé] / Peter J. Diggle, Auteur . - Third Edition . - Boca Raton ; London ; New York : CRC Press, 2014, cop. 2014 . - 1 vol. (XXXI-267 p.) : ill., couv. ill. en coul. ; 24 cm. - (Monographs on statistics and applied probability; 128) .
ISBN : 978-1-4665-6023-9
To the memory of Julian Besag FRS, 1945-2010. -- PPN 19546768X
Langues : Anglais (eng)
Tags : Analyse spatiale (Statistique) R (logiciel) Processus stochastiques Markov, Processus de Poisson, Processus de Epidémiologie Évaluation du risque -- Méthodes statistiques Spatial analysis (Statistics) Stochastic processes Markov processes Poisson processes Epidemiology Risk assessment Index. décimale : 519.53 Statistiques descriptives, analyse multivariée, analyse de la variance et de la covariance Résumé : Written by a prominent statistician and author, the first edition of this bestseller broke new ground in the then emerging subject of spatial statistics with its coverage of spatial point patterns. Retaining all the material from the second edition and adding substantial new material, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition presents models and statistical methods for analyzing spatially referenced point process data. Reflected in the title, this third edition now covers spatio-temporal point patterns. It explores the methodological developments from the last decade along with diverse applications that use spatio-temporally indexed data. Practical examples illustrate how the methods are applied to analyze spatial data in the life sciences. This edition also incorporates the use of R through several packages dedicated to the analysis of spatial point process data. Sample R code and data sets are available on the author's website -- Source other than Library of Congress Note de contenu : Sommaire (abrégé) : List of figures (p.xv). - List of tables (p.xxvii). - Preface (p.xxix). - 1. Introduction (p.1). - 2. Preliminary testing (p.17). - 3. Methods for sparsely sampled patterns (p.39). - 4. Spatial point processes (p.55). - 5. Nonparametric methods (p.83) - 6. Models (p.99) - 7. Model-fitting using summary descriptions (p.131). - 8. Model-fitting using likelihood-based methods (p.151) - 9. Point process methods in spatial epidemiology (p.173). - 10. Spatio-temporal point processes (p.195). - 11. Exploratory analysis (p.209). - 12. Empirical models and methods (p.223). - 13. Mechanistic models and methods (p.235). - References (p.245) - Index (p.263)
Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-VV-002121 F3-2121 Ouvrages / Books OCA Bib. Lagrange Nice Valrose VV-F3/F4-Statistiques et Probabilités Sorti jusqu'au 31/01/2022 The statistical analysis of spatial pattern / Maurice Stevenson Bartlett (1975)
Titre : The statistical analysis of spatial pattern Type de document : texte imprimé Auteurs : Maurice Stevenson Bartlett, Auteur Editeur : London ; Boca Raton, Fla. : Chapman and Hall Année de publication : 1975 Collection : Monographs on applied probability and statistics Importance : IX, 90 p. Format : 22 cm ISBN/ISSN/EAN : 978-0-412-14290-1 Note générale : ISBN : 0-470-05467-0 (New York). - 0-412-14290-2 (London). - PPN 016863879 Langues : Anglais (eng) Tags : Analyse spatiale (Statistique) Spatial analysis (Statistics) Index. décimale : 519.53 Statistiques descriptives, analyse multivariée, analyse de la variance et de la covariance Note de contenu : Bibliography : p.84-88. Index The statistical analysis of spatial pattern [texte imprimé] / Maurice Stevenson Bartlett, Auteur . - London ; Boca Raton, Fla. : Chapman and Hall, 1975 . - IX, 90 p. ; 22 cm. - (Monographs on applied probability and statistics) .
ISBN : 978-0-412-14290-1
ISBN : 0-470-05467-0 (New York). - 0-412-14290-2 (London). - PPN 016863879
Langues : Anglais (eng)
Tags : Analyse spatiale (Statistique) Spatial analysis (Statistics) Index. décimale : 519.53 Statistiques descriptives, analyse multivariée, analyse de la variance et de la covariance Note de contenu : Bibliography : p.84-88. Index Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-VV-000798 F4-798 Ouvrages / Books OCA Bib. Lagrange Nice Valrose VV-F3/F4-Statistiques et Probabilités Disponible