Détail d'une collection
Cambridge studies in advanced mathematics
Editeur :
ISSN :
pas d'ISSN
|
Documents disponibles dans la collection
trié(s) par (Pertinence décroissant(e), Titre croissant(e)) Affiner la recherche
Some random series of functions [2nd ed] / Jean-Pierre Kahane (1985)
Titre : Some random series of functions [2nd ed] Type de document : texte imprimé Auteurs : Jean-Pierre Kahane (1926-....), Auteur Editeur : Cambridge ; New York ; Melbourne [UK ; USA] : Cambridge University Press (CUP) Année de publication : 1985 Collection : Cambridge studies in advanced mathematics num. 5 Importance : xiii-305 p. Format : 24 cm ISBN/ISSN/EAN : 978-0-521-45602-9 Note générale : 2ème édition. Première publication parue chez D.C. Heath en 1968 . ISBN : 0-521-24966-X (hbk).- ISBN : 0-521-45602-9.- PPN 026138085 Langues : Anglais (eng) Tags : Fonctions (mathématiques) Processus stochastiques Séries (mathématiques) Functions (mathematics) Series Random variables Stochastic processes Index. décimale : 519.23 Processus probabilistes - Processus stochastiques - Processus gaussiens Note de contenu : Bibliogr. p. 290-300. Index Some random series of functions [2nd ed] [texte imprimé] / Jean-Pierre Kahane (1926-....), Auteur . - Cambridge ; New York ; Melbourne (UK ; USA) : Cambridge University Press (CUP), 1985 . - xiii-305 p. ; 24 cm. - (Cambridge studies in advanced mathematics; 5) .
ISBN : 978-0-521-45602-9
2ème édition. Première publication parue chez D.C. Heath en 1968 . ISBN : 0-521-24966-X (hbk).- ISBN : 0-521-45602-9.- PPN 026138085
Langues : Anglais (eng)
Tags : Fonctions (mathématiques) Processus stochastiques Séries (mathématiques) Functions (mathematics) Series Random variables Stochastic processes Index. décimale : 519.23 Processus probabilistes - Processus stochastiques - Processus gaussiens Note de contenu : Bibliogr. p. 290-300. Index Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-004015 004015 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Salle de lecture-Ouvrages Disponible Stochastic Flows and Stochastic Differential Equations / Hiroshi Kunita (cop. 1990)
Titre : Stochastic Flows and Stochastic Differential Equations Type de document : texte imprimé Auteurs : Hiroshi Kunita, Auteur Editeur : Cambridge ; New York ; Melbourne [UK ; USA] : Cambridge University Press (CUP) Année de publication : cop. 1990 Collection : Cambridge studies in advanced mathematics num. 24 Importance : 1 vol. (XIV-346 p.) Format : 23 cm ISBN/ISSN/EAN : 978-0-521-59925-2 Note générale : Autres tirages : 1997, 2002. - ISBN : 0-521-59925-3 (br.). - ISBN : 0-521-35050-6 (rel.) .- PPN 199092117 Langues : Anglais (eng) Tags : Analyse stochastique Flots (dynamique différentiable) Equations différentielles stochastiques Stochastic analysis Flows (Differentiable dynamical systems) Stochastic differential equations Index. décimale : 519.23 Processus probabilistes - Processus stochastiques - Processus gaussiens Résumé : The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows. The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study. The author begins with a discussion of Markov processes, martingales and Brownian motion, followed by a review of Itô's stochastic analysis. The next chapter deals with continuous semimartingales with spatial parameters, in order to study stochastic flow, and a generalisation of Ito's equation. Stochastic flows and their relation with this are generalised and considered in chapter 4. It is shown that solutions of a given stochastic differential equation define stochastic flows of diffeomorphisms. Some applications are given of particular cases. Chapter 5 is devoted to limit theorems involving stochastic flows, and the book ends with a treatment of stochastic partial differential equations through the theory of stochastic flows. Applications to filtering theory are discussed. Note de contenu : Bibliogr. p. 340-344. Index p.345-346 Stochastic Flows and Stochastic Differential Equations [texte imprimé] / Hiroshi Kunita, Auteur . - Cambridge ; New York ; Melbourne (UK ; USA) : Cambridge University Press (CUP), cop. 1990 . - 1 vol. (XIV-346 p.) ; 23 cm. - (Cambridge studies in advanced mathematics; 24) .
ISBN : 978-0-521-59925-2
Autres tirages : 1997, 2002. - ISBN : 0-521-59925-3 (br.). - ISBN : 0-521-35050-6 (rel.) .- PPN 199092117
Langues : Anglais (eng)
Tags : Analyse stochastique Flots (dynamique différentiable) Equations différentielles stochastiques Stochastic analysis Flows (Differentiable dynamical systems) Stochastic differential equations Index. décimale : 519.23 Processus probabilistes - Processus stochastiques - Processus gaussiens Résumé : The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows. The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study. The author begins with a discussion of Markov processes, martingales and Brownian motion, followed by a review of Itô's stochastic analysis. The next chapter deals with continuous semimartingales with spatial parameters, in order to study stochastic flow, and a generalisation of Ito's equation. Stochastic flows and their relation with this are generalised and considered in chapter 4. It is shown that solutions of a given stochastic differential equation define stochastic flows of diffeomorphisms. Some applications are given of particular cases. Chapter 5 is devoted to limit theorems involving stochastic flows, and the book ends with a treatment of stochastic partial differential equations through the theory of stochastic flows. Applications to filtering theory are discussed. Note de contenu : Bibliogr. p. 340-344. Index p.345-346 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-010177 010177 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Salle de lecture-Ouvrages Sorti jusqu'au 13/11/2025