Résultat de la recherche
2 résultat(s) recherche sur le tag 'Flots (dynamique différentiable)'
trié(s) par (Pertinence décroissant(e), Titre croissant(e)) Affiner la recherche Générer le flux rss de la recherche
Partager le résultat de cette recherche
Geometric Numerical Integration / Ernst Hairer (2006)
Titre : Geometric Numerical Integration : Structure Preserving Algorithms for Ordinary Differencial Equation Type de document : texte imprimé Auteurs : Ernst Hairer (1949-....), Auteur Editeur : Berlin ; Heidelberg ; Dordrecht ; New York ; London ; Paris ; Wien : Springer Verlag Année de publication : 2006 Collection : Springer series in computational mathematics, ISSN 0179-3632 num. 31 Importance : XVII-644 p. Présentation : fig., couv. ill. en coul. Format : 24 cm ISBN/ISSN/EAN : 978-3-540-30663-4 Note générale : ISBN : 3-540-30663-3 Langues : Anglais (eng) Tags : Intégration numérique Équations différentielles -- Solutions numériques Systèmes hamiltoniens Runge-Kutta, Méthode de Flots (dynamique différentiable) Numerical integration Hamiltonian systems Differential equations -- Numerical solutions Index. décimale : 515.352 Equations différentielles ordinaires Note de contenu : Bibliogr. p. [617]-636. Notes bibliogr. Index Geometric Numerical Integration : Structure Preserving Algorithms for Ordinary Differencial Equation [texte imprimé] / Ernst Hairer (1949-....), Auteur . - Berlin ; Heidelberg ; Dordrecht ; New York ; London ; Paris ; Wien : Springer Verlag, 2006 . - XVII-644 p. : fig., couv. ill. en coul. ; 24 cm. - (Springer series in computational mathematics, ISSN 0179-3632; 31) .
ISBN : 978-3-540-30663-4
ISBN : 3-540-30663-3
Langues : Anglais (eng)
Tags : Intégration numérique Équations différentielles -- Solutions numériques Systèmes hamiltoniens Runge-Kutta, Méthode de Flots (dynamique différentiable) Numerical integration Hamiltonian systems Differential equations -- Numerical solutions Index. décimale : 515.352 Equations différentielles ordinaires Note de contenu : Bibliogr. p. [617]-636. Notes bibliogr. Index Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-SA-G003721 M II-164 Ouvrages / Books OCA Bib. Géoazur Sophia-Antipolis SA-Salle-A214 Sorti jusqu'au 26/10/2021 Stochastic Flows and Stochastic Differential Equations / Hiroshi Kunita (cop. 1990)
Titre : Stochastic Flows and Stochastic Differential Equations Type de document : texte imprimé Auteurs : Hiroshi Kunita, Auteur Editeur : Cambridge ; New York ; Melbourne [UK ; USA] : Cambridge University Press (CUP) Année de publication : cop. 1990 Collection : Cambridge studies in advanced mathematics num. 24 Importance : 1 vol. (XIV-346 p.) Format : 23 cm ISBN/ISSN/EAN : 978-0-521-59925-2 Note générale : Autres tirages : 1997, 2002. - ISBN : 0-521-59925-3 (br.). - ISBN : 0-521-35050-6 (rel.) .- PPN 199092117 Langues : Anglais (eng) Tags : Analyse stochastique Flots (dynamique différentiable) Equations différentielles stochastiques Stochastic analysis Flows (Differentiable dynamical systems) Stochastic differential equations Index. décimale : 519.23 Processus probabilistes - Processus stochastiques - Processus gaussiens Résumé : The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows. The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study. The author begins with a discussion of Markov processes, martingales and Brownian motion, followed by a review of Itô's stochastic analysis. The next chapter deals with continuous semimartingales with spatial parameters, in order to study stochastic flow, and a generalisation of Ito's equation. Stochastic flows and their relation with this are generalised and considered in chapter 4. It is shown that solutions of a given stochastic differential equation define stochastic flows of diffeomorphisms. Some applications are given of particular cases. Chapter 5 is devoted to limit theorems involving stochastic flows, and the book ends with a treatment of stochastic partial differential equations through the theory of stochastic flows. Applications to filtering theory are discussed. Note de contenu : Bibliogr. p. 340-344. Index p.345-346 Stochastic Flows and Stochastic Differential Equations [texte imprimé] / Hiroshi Kunita, Auteur . - Cambridge ; New York ; Melbourne (UK ; USA) : Cambridge University Press (CUP), cop. 1990 . - 1 vol. (XIV-346 p.) ; 23 cm. - (Cambridge studies in advanced mathematics; 24) .
ISBN : 978-0-521-59925-2
Autres tirages : 1997, 2002. - ISBN : 0-521-59925-3 (br.). - ISBN : 0-521-35050-6 (rel.) .- PPN 199092117
Langues : Anglais (eng)
Tags : Analyse stochastique Flots (dynamique différentiable) Equations différentielles stochastiques Stochastic analysis Flows (Differentiable dynamical systems) Stochastic differential equations Index. décimale : 519.23 Processus probabilistes - Processus stochastiques - Processus gaussiens Résumé : The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows. The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study. The author begins with a discussion of Markov processes, martingales and Brownian motion, followed by a review of Itô's stochastic analysis. The next chapter deals with continuous semimartingales with spatial parameters, in order to study stochastic flow, and a generalisation of Ito's equation. Stochastic flows and their relation with this are generalised and considered in chapter 4. It is shown that solutions of a given stochastic differential equation define stochastic flows of diffeomorphisms. Some applications are given of particular cases. Chapter 5 is devoted to limit theorems involving stochastic flows, and the book ends with a treatment of stochastic partial differential equations through the theory of stochastic flows. Applications to filtering theory are discussed. Note de contenu : Bibliogr. p. 340-344. Index p.345-346 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-010177 010177 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Salle de lecture-Ouvrages Sorti jusqu'au 22/11/2021