Titre : |
Deep learning with Python [2nd ed.] |
Type de document : |
texte imprimé |
Auteurs : |
François Chollet (1989-....), Auteur |
Mention d'édition : |
Second Edition |
Editeur : |
Shelter Island, NY : Manning publications |
Année de publication : |
2021, cop. 2023 |
Importance : |
1 vol. (XXIV-478 p.) |
Présentation : |
ill. en noir et coul., couv. ill. en coul., phot. |
Format : |
24 cm |
ISBN/ISSN/EAN : |
978-1-61729-686-4 |
Note générale : |
ISBN : 1-61729-686-4 .- PPN 261543172
EAN : 9781617296864 |
Langues : |
Anglais (eng) |
Tags : |
Python (langage de programmation) Apprentissage automatique Apprentissage profond Réseaux neuronaux (informatique) Python (Computer program language) Machine learning Neural networks (Computer science) |
Index. décimale : |
005.133 Langages de programmation particuliers |
Résumé : |
En 4e de couverture : "Recent innovations in deep learning unlock exciting new software capabilities like automated language translation, image recognition, and more. Deep learning is quickly becoming essential knowledge for every software developer, and modern tools like Keras and TensorFlow put it within your reach-- even if you have no background in mathematics or data science. This book shows you how to get started. "Deep learning with Python, second edition" introduces the field of deep learning using Python and the powerful Keras library. In this revised and expanded new edition, Keras creator François Chollet offers insights for both novice and experienced machine learning practitioners. As you move through this book, you'll build your understanding through intuitive explanations, crisp illustrations, and clear examples. You'll quickly pick up the skills you need to start developing deep-learning applications." |
Note de contenu : |
Index
Sommaire : 1. What is deep learning?.2. The mathematical building blocks of neural networks.3. Introduction to Keras and TensorFlow.4. Getting started with neural networks: classification and regression.5. Fundamentals of machine learning.6. The universal workflow of machine learning.7. Working with Keras: a deep dive.8. Introduction to deep learning for computer vision.9. Advanced deep learning for computer vision.10. Deep learning for timeseries.11. Deep learning for text.12. Generative deep learning.13. Best practices for the real world.14. Conclusions |
Deep learning with Python [2nd ed.] [texte imprimé] / François Chollet (1989-....), Auteur . - Second Edition . - Shelter Island, NY : Manning publications, 2021, cop. 2023 . - 1 vol. (XXIV-478 p.) : ill. en noir et coul., couv. ill. en coul., phot. ; 24 cm. ISBN : 978-1-61729-686-4 ISBN : 1-61729-686-4 .- PPN 261543172
EAN : 9781617296864 Langues : Anglais ( eng)
Tags : |
Python (langage de programmation) Apprentissage automatique Apprentissage profond Réseaux neuronaux (informatique) Python (Computer program language) Machine learning Neural networks (Computer science) |
Index. décimale : |
005.133 Langages de programmation particuliers |
Résumé : |
En 4e de couverture : "Recent innovations in deep learning unlock exciting new software capabilities like automated language translation, image recognition, and more. Deep learning is quickly becoming essential knowledge for every software developer, and modern tools like Keras and TensorFlow put it within your reach-- even if you have no background in mathematics or data science. This book shows you how to get started. "Deep learning with Python, second edition" introduces the field of deep learning using Python and the powerful Keras library. In this revised and expanded new edition, Keras creator François Chollet offers insights for both novice and experienced machine learning practitioners. As you move through this book, you'll build your understanding through intuitive explanations, crisp illustrations, and clear examples. You'll quickly pick up the skills you need to start developing deep-learning applications." |
Note de contenu : |
Index
Sommaire : 1. What is deep learning?.2. The mathematical building blocks of neural networks.3. Introduction to Keras and TensorFlow.4. Getting started with neural networks: classification and regression.5. Fundamentals of machine learning.6. The universal workflow of machine learning.7. Working with Keras: a deep dive.8. Introduction to deep learning for computer vision.9. Advanced deep learning for computer vision.10. Deep learning for timeseries.11. Deep learning for text.12. Generative deep learning.13. Best practices for the real world.14. Conclusions |
|