Détail d'une collection
|
Documents disponibles dans la collection
trié(s) par (Pertinence décroissant(e), Titre croissant(e)) Affiner la recherche
An introduction to element-based Galerkin methods on tensor-product bases / Francis X. Giraldo (2020, cop. 2020)
Titre : An introduction to element-based Galerkin methods on tensor-product bases : analysis, algorithms, and applications Type de document : texte imprimé Auteurs : Francis X. Giraldo, Auteur Editeur : Berlin : Springer Année de publication : 2020, cop. 2020 Collection : Texts in Computational Science and Engineering, ISSN 1611-0994 num. 24 Importance : 1 vol. (XXVI-559 p.) Présentation : ill. en coul. Format : 24 cm ISBN/ISSN/EAN : 978-3-030-55071-4 Note générale : PPN 265844959 Langues : Anglais (eng) Tags : Analyse numérique Equations aux dérivées partielles -- Solutions numériques Galerkine, Méthodes de Equations différentielles hyperboliques Équations différentielles elliptiques Numerical analysis Differential equations, Partial Numerical solutions Galerkin methods Computer science Mathematics Differential equations,Elliptic Differential equations, Hyperbolic Index. décimale : 518.028 5 Analyse numérique - Applications informatiques Résumé : This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations. Note de contenu : Bibliogr. p.524-545 (424 réf.) - . Index p. 547-550 An introduction to element-based Galerkin methods on tensor-product bases : analysis, algorithms, and applications [texte imprimé] / Francis X. Giraldo, Auteur . - Berlin : Springer, 2020, cop. 2020 . - 1 vol. (XXVI-559 p.) : ill. en coul. ; 24 cm. - (Texts in Computational Science and Engineering, ISSN 1611-0994; 24) .
ISBN : 978-3-030-55071-4
PPN 265844959
Langues : Anglais (eng)
Tags : Analyse numérique Equations aux dérivées partielles -- Solutions numériques Galerkine, Méthodes de Equations différentielles hyperboliques Équations différentielles elliptiques Numerical analysis Differential equations, Partial Numerical solutions Galerkin methods Computer science Mathematics Differential equations,Elliptic Differential equations, Hyperbolic Index. décimale : 518.028 5 Analyse numérique - Applications informatiques Résumé : This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations. Note de contenu : Bibliogr. p.524-545 (424 réf.) - . Index p. 547-550 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-010301 010301 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Sous sol-1-Ouvrages Sorti jusqu'au 18/11/2025 A Primer on Scientific Programming with Python / Hans Petter Langtangen (2009)
Titre : A Primer on Scientific Programming with Python Type de document : texte imprimé Auteurs : Hans Petter Langtangen, Auteur Mention d'édition : 1st ed. Editeur : Berlin : Springer Année de publication : 2009 Collection : Texts in Computational Science and Engineering, ISSN 1611-0994 num. 6 Importance : xxvii, 693 p. ISBN/ISSN/EAN : 978-3-642-02474-0 Langues : Anglais (eng) Tags : Python (langage de programmation) Ordinateurs -- Programmation Python (Computer program language) Computer programming Index. décimale : 005.133 Langages de programmation particuliers A Primer on Scientific Programming with Python [texte imprimé] / Hans Petter Langtangen, Auteur . - 1st ed. . - Berlin : Springer, 2009 . - xxvii, 693 p.. - (Texts in Computational Science and Engineering, ISSN 1611-0994; 6) .
ISBN : 978-3-642-02474-0
Langues : Anglais (eng)
Tags : Python (langage de programmation) Ordinateurs -- Programmation Python (Computer program language) Computer programming Index. décimale : 005.133 Langages de programmation particuliers Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-SA-002224 LAN-05 Ouvrages / Books OCA Bib. Géoazur Sophia-Antipolis SA-Salle-A213-Ouvrages Disponible