Résultat de la recherche
2 résultat(s) recherche sur le tag 'Differential equations,Elliptic' 




Titre : Partial differential equations [2nd ed. rev.] Type de document : texte imprimé Auteurs : Lawrence C. Evans, Auteur Mention d'édition : Second edition, reprinted with corrections 2015 Editeur : Providence, R.I. [USA] : American Mathematical Society (AMS) Année de publication : 2015 Collection : Graduate studies in mathematics, ISSN 1065-7339 num. 19 Importance : 1 vol. (XXI-754 p.) Présentation : ill. Format : 27 cm ISBN/ISSN/EAN : 978-0-8218-4974-3 Note générale : PPN 196753783
Langues : Anglais (eng) Tags : Équations aux dérivées partielles Equations d'onde Equation de la chaleur Transformations (mathématiques) Laplace, transformations de Sobolev, Espaces de Équations différentielles elliptiques Calcul des variations Hamilton-Jacobi, Équations de Lois de conservation (mathématiques) Lois de conservation (physique) Differential equations, Partial Wave equation Heat equation Transforms (mathematics) Laplace transforms Sobolev spaces Differential equations,Elliptic Calculus of variations Hamilton-Jacobi equations Conservation laws (Mathematics) Conservation laws (Physics) Index. décimale : 515.353 Équations différentielles aux dérivées partielles (p. ex. équations elliptiques, hyperboliques, paraboliques). Résumé : "This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including: a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, and a significantly expanded bibliography." Note de contenu : Bibliogr. p. 739-744. Index p. 745-754. Partial differential equations [2nd ed. rev.] [texte imprimé] / Lawrence C. Evans, Auteur . - Second edition, reprinted with corrections 2015 . - Providence, R.I. (USA) : American Mathematical Society (AMS), 2015 . - 1 vol. (XXI-754 p.) : ill. ; 27 cm. - (Graduate studies in mathematics, ISSN 1065-7339; 19) .
ISBN : 978-0-8218-4974-3
PPN 196753783
Langues : Anglais (eng)
Tags : Équations aux dérivées partielles Equations d'onde Equation de la chaleur Transformations (mathématiques) Laplace, transformations de Sobolev, Espaces de Équations différentielles elliptiques Calcul des variations Hamilton-Jacobi, Équations de Lois de conservation (mathématiques) Lois de conservation (physique) Differential equations, Partial Wave equation Heat equation Transforms (mathematics) Laplace transforms Sobolev spaces Differential equations,Elliptic Calculus of variations Hamilton-Jacobi equations Conservation laws (Mathematics) Conservation laws (Physics) Index. décimale : 515.353 Équations différentielles aux dérivées partielles (p. ex. équations elliptiques, hyperboliques, paraboliques). Résumé : "This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including: a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, and a significantly expanded bibliography." Note de contenu : Bibliogr. p. 739-744. Index p. 745-754. Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-009687 009687 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Salle de lecture-Ouvrages Sorti jusqu'au 11/01/2022 An introduction to element-based Galerkin methods on tensor-product bases / Francis X. Giraldo (2020, cop. 2020)
Titre : An introduction to element-based Galerkin methods on tensor-product bases : analysis, algorithms, and applications Type de document : texte imprimé Auteurs : Francis X. Giraldo, Auteur Editeur : Berlin : Springer Année de publication : 2020, cop. 2020 Collection : Texts in Computational Science and Engineering, ISSN 1611-0994 num. 24 Importance : 1 vol. (XXVI-559 p.) Présentation : ill. en coul. Format : 24 cm ISBN/ISSN/EAN : 978-3-030-55071-4 Note générale : PPN 265844959 Langues : Anglais (eng) Tags : Analyse numérique Equations aux dérivées partielles -- Solutions numériques Galerkine, Méthodes de Equations différentielles hyperboliques Équations différentielles elliptiques Numerical analysis Differential equations, Partial Numerical solutions Galerkin methods Computer science Mathematics Differential equations,Elliptic Differential equations, Hyperbolic Index. décimale : 518.028 5 Analyse numérique - Applications informatiques Résumé : This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations. Note de contenu : Bibliogr. p.524-545 (424 réf.) - . Index p. 547-550 An introduction to element-based Galerkin methods on tensor-product bases : analysis, algorithms, and applications [texte imprimé] / Francis X. Giraldo, Auteur . - Berlin : Springer, 2020, cop. 2020 . - 1 vol. (XXVI-559 p.) : ill. en coul. ; 24 cm. - (Texts in Computational Science and Engineering, ISSN 1611-0994; 24) .
ISBN : 978-3-030-55071-4
PPN 265844959
Langues : Anglais (eng)
Tags : Analyse numérique Equations aux dérivées partielles -- Solutions numériques Galerkine, Méthodes de Equations différentielles hyperboliques Équations différentielles elliptiques Numerical analysis Differential equations, Partial Numerical solutions Galerkin methods Computer science Mathematics Differential equations,Elliptic Differential equations, Hyperbolic Index. décimale : 518.028 5 Analyse numérique - Applications informatiques Résumé : This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations. Note de contenu : Bibliogr. p.524-545 (424 réf.) - . Index p. 547-550 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Nom du donateur OCA-NI-010301 010301 Ouvrages / Books OCA Bib. Nice Mont-Gros NI-Sous sol-1-Ouvrages Sorti jusqu'au 20/02/2023